Respuesta :
Answer:
A. No real solution
B. 5 and -1.5
C. 5.5
Step-by-step explanation:
The quadratic formula is:
[tex]\begin{array}{*{20}c} {\frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} \end{array}[/tex], with a being the x² term, b being the x term, and c being the constant.
Let's solve for a.
[tex]\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {5^2 - 4\cdot1\cdot11} }}{{2\cdot1}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {25 - 44} }}{{2}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {-19} }}{{2}}} \end{array}[/tex]
We can't take the square root of a negative number, so A has no real solution.
Let's do B now.
[tex]\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {7^2 - 4\cdot-2\cdot15} }}{{2\cdot-2}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {49 + 120} }}{{-4}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {169} }}{{-4}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 7 \pm 13 }}{{-4}}} \end{array}[/tex]
[tex]\frac{7+13}{4} = 5\\\frac{7-13}{4}=-1.5[/tex]
So B has two solutions of 5 and -1.5.
Now to C!
[tex]\begin{array}{*{20}c} {\frac{{ -(-44) \pm \sqrt {-44^2 - 4\cdot4\cdot121} }}{{2\cdot4}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 44 \pm \sqrt {1936 - 1936} }}{{8}}} \end{array}[/tex]
[tex]\begin{array}{*{20}c} {\frac{{ 44 \pm 0}}{{8}}} \end{array}[/tex]
[tex]\frac{44}{8} = 5.5[/tex]
So c has one solution: 5.5
Hope this helped (and I'm sorry I'm late!)