Respuesta :
Answer:
The co-terminal angle of [tex]\frac{3\pi}{4}\ \text{radians}[/tex] is [tex]-\frac{5\pi}{4}\ \text{radians}[/tex].
Step-by-step explanation:
The angle provided is, [tex]\frac{3\pi}{4}\ \text{radians}[/tex].
Convert the angle into degrees as follows:
[tex]\frac{3\pi}{4}\ \text{radians}=\frac{3\times180^{o}}{4}=135^{o}[/tex]
Co-terminal angles are those angles that share the same terminal and initial sides.
To find the co-terminal angle of a provided angle, we just need to add or subtract 360° or 2π to it.
Determine the co-terminal angle of [tex]\frac{3\pi}{4}\ \text{radians}[/tex] as follows:
[tex]\text{Co-terminal Angle}=\frac{3\pi}{4}+2\pi[/tex]
               [tex]=\frac{3\pi+8\pi}{4}\\\\=\frac{11\pi}{4}[/tex]
[tex]\text{Co-terminal Angle}=\frac{3\pi}{4}-2\pi[/tex]
               [tex]=\frac{3\pi-8\pi}{4}\\\\=-\frac{5\pi}{4}[/tex]
Thus, the co-terminal angle of [tex]\frac{3\pi}{4}\ \text{radians}[/tex] is [tex]-\frac{5\pi}{4}\ \text{radians}[/tex].