Respuesta :
Answer:
15m/s
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx − [tex]\omega[/tex]t) where An is the amplitude f oscillation, [tex]\omega[/tex] is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula; [tex]k =\frac{2\pi x}{\lambda} \ and \ \omega = 2 \pi f[/tex] where;
[tex]\lambda \ is\ the \ wavelength \ and\ f \ is\ the\ frequency[/tex]
Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = [tex]\frac{1}{(2/15)}[/tex]
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength [tex]\lambda[/tex] = 2m
Transverse speed [tex]v = f \lambda[/tex]
[tex]v = 15/2 * 2\\\\v = 30/2\\\\v = 15m/s[/tex]
Hence, the transverse speed at that point is 15m/s