Answer:
The coefficient of correlation is 0.7098.
Step-by-step explanation:
The correlation coefficient is a statistical degree that computes the strength of the linear relationship amid the relative movements of the two variables (i.e. dependent and independent).It ranges from -1 to +1.
The formula to compute the correlation coefficient is:
[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot\sum X^{2}-(\sum X)^{2}][n\cdot\sum Y^{2}-(\sum Y)^{2}]}}[/tex]
The required values are computed in the Excel sheet attached below.
Compute the value of r as follows:
[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot\sum X^{2}-(\sum X)^{2}][n\cdot\sum Y^{2}-(\sum Y)^{2}]}}[/tex]
 [tex]=\frac{(6\cdot 4877.5)-(303.3\cdot 96.3)}{\sqrt{[(6\cdot15367.3)-(303.3)^{2}][(6\cdot1550.7)-(96.3)^{2}]}}\\\\=\frac{57.21}{80.597}\\\\=0.70983\\\\\approx 0.7098[/tex]
Thus, the coefficient of correlation is 0.7098.