Use implicit differentiation to find an equation of the tangent line to the curve at the given point. x2⁄3 + y2⁄3 = 4, −3 3 , 1 (astroid)

Respuesta :

The complete question is

Use implicit differentiation to find an equation of the tangent line to the curve at the given point. [tex]x^\frac{2}{3} + y^\frac{2}{3} = 4[/tex], [tex]( -3\sqrt{3} ,1)[/tex]

Answer:

Equation of tangent is y =  [tex]\frac{1}{\sqrt{3} }[/tex]x  + 4

Step-by-step explanation:

We are given the equation

[tex]x^\frac{2}{3} + y^\frac{2}{3} = 4[/tex],  

upon differentiating

d([tex]x^\frac{2}{3} + y^\frac{2}{3} = 4[/tex]) /dx = d(4)/dx

[tex]\frac{2}{3}x^-\frac{1}{3 } + \frac{2}{3}y^ -\frac{1}{3} dy/dx = 0[/tex]

dy/dx = [tex]-x^\frac{1}{3} /y^-\frac{1}{3}[/tex] = [tex]-y^\frac{1 }{3}/ x^\frac{1}{3}[/tex]

upon substituting the values (x, y)= [tex]( -3\sqrt{3} ,1)[/tex]

dy/dx = [tex]\frac{1}{\sqrt{3} }[/tex]

equation of the tangent

y - 1 = [tex]\frac{1}{\sqrt{3} }[/tex] ( x- (-[tex]3\sqrt{3}[/tex]))

y =  [tex]\frac{1}{\sqrt{3} }[/tex]x  + 4