Answer:
Step-by-step explanation:
Using the distance formula: distance = [tex]\sqrt{(x_{2} -x_{1})^{2}+(y_{2} -y_{1})^{2} }[/tex]
sub it in,
10 = [tex]\sqrt{(10 -2)^{2}+(y-(-3)^{2}}[/tex]
10 = [tex]\sqrt{(8)^{2} +(y+3)^{2}}[/tex]
10 = [tex]\sqrt{64+y^{2} +9+6y}[/tex]
10 = [tex]\sqrt{73+y^{2} +6y}[/tex]
square both sides:
100 = 73 + [tex]y^{2}[/tex] + 6y
[tex]y^{2}[/tex] + 6y = 27
y( y + 6) = 27
y = 27 OR THE OTHER SOLUTION IS y + 6 = 27
y = 21