Answer:
[tex]P(Not\ F\ and\ S) = 0.06[/tex]
Step-by-step explanation:
Given
Represent Subscribe with S and Female with F
[tex]P(S) = 0.13[/tex]
[tex]P(F) = 0.57[/tex]
[tex]P(Not\ F\ and\ Not\ S) = 0.32[/tex]
Required
Determine [tex]P(Not\ F\ and\ S)[/tex]
The required probability is calculated using:
[tex]P(Not\ F\ and\ S) = P(Not\ F) * P(S)[/tex]
[tex]P(Not\ F)[/tex] is calculated using:
[tex]P(Not\ F) = 1 - P(F)[/tex]
[tex]P(Not\ F) = 1 - 0.57[/tex]
[tex]P(Not\ F) = 0.43[/tex]
So:
[tex]P(Not\ F\ and\ S) = P(Not\ F) * P(S)[/tex]
[tex]P(Not\ F\ and\ S) = 0.43 * 0.13[/tex]
[tex]P(Not\ F\ and\ S) = 0.0559[/tex]
[tex]P(Not\ F\ and\ S) = 0.06[/tex] (approximated)