The distance traveled, D in feet, is a function of time, t, in seconds, with
D=f(t)= t 3 +1
​Find f(10), f'(10), and the relative rate of change f'/f at t=10. Interpret your answers in terms of distance travele

Respuesta :

Answer:

1001 m/s

300 [tex]m/s^2[/tex]

0.299.

Step-by-step explanation:

Given that:

[tex]D=f(t)=t^3+1[/tex]

[tex]f(10)[/tex] means putting the value of [tex]t=10[/tex] in [tex]f(t)[/tex].

[tex]f(10) = 10^3+1=1001[/tex] [tex]m/s[/tex]

To find [tex]f'(10)[/tex], we need to find [tex]f'(t)[/tex] first.

Differentiating the equation of Distance [tex]D[/tex] w.r.to [tex]t[/tex]:

[tex]f'(t) = \dfrac{d}{dt}(t^3+1)= 3t^{3-1}+1 = 3t^2[/tex]

[tex]f'(10) = 3(10)^2=300[/tex] [tex]m/s^2[/tex]

Relative rate of change:

[tex]\dfrac{f'}{f}\ at\ t = 10 \Rightarrow \dfrac{300}{1001} \approx 0.299[/tex]