Answer:
[tex]J' =(1, 3)[/tex]
[tex]K' = (4,4)[/tex]
[tex]L' = (6,0)[/tex]
[tex]M' = (-1,-3)[/tex]
Step-by-step explanation:
Given
[tex]J = (-6,6)[/tex]
[tex]K = (-3,7)[/tex]
[tex]L= (-1,3)[/tex]
[tex]M = (-8,0)[/tex]
Transformation: [tex](x,y) = (x+7,y-3)[/tex]
This means that, we add 7 to the x coordinate and subtract 3 from the y coordinate.
For J, we have:
[tex]J = (-6,6)[/tex]
[tex]J' =(-6 + 7, 6 - 3)[/tex]
[tex]J' =(1, 3)[/tex]
For K, we have:
[tex]K = (-3,7)[/tex]
[tex]K' = (-3+7,7-3)[/tex]
[tex]K' = (4,4)[/tex]
For L, we have:
[tex]L= (-1,3)[/tex]
[tex]L' = (-1 + 7,3-3)[/tex]
[tex]L' = (6,0)[/tex]
For M, we have:
[tex]M = (-8,0)[/tex]
[tex]M' = (-8+7,0-3)[/tex]
[tex]M' = (-1,-3)[/tex]