Answer:
p(s) = 0,33
Step-by-step explanation:
n = 450
p₀ = 150/450    p₀ = 0,33    then   q₀  = 0,67
n*pâ‚€ = 0,33*450 Â = Â 150
n*qâ‚€ Â = 0,67*450 = 301
n*p₀  and n*q₀  more than 10, we can approximate  the binomial to a Normal Distribution Distribution
a) p - p₀  = z(c) * √ (p₀q₀)/n
z(c) = Â ??
CI  95 %   then α = 5 %   α = 0,05    α/2 = 0,025
z(c) = 1,96
p  =  p₀  ±  z(c) * √ (p₀q₀)/n
p  = 0,33 ± 1,96 * 0,022
p = Â ( Â 0,33 - 0,04 ; Â 0,33 + Â 0,04
p = ( 0,29 Â ; 0,37 )
The value of the center of the confidence Interval is 0,33
p(s) = 0,33