Respuesta :
To answer this question we need to make use of Linear Programming
The solution is:
x = 170 units
y = 345 units
z(max) = 2235 rupees
To solve a linear programming problem, we need to formulate the model Â
The Objective Function
Let´s call x the number of product 1 manufactured
and y the number of product 2 manufactured
Then the Objective Function is:
z = 3× x + 5×y   to be maximize
The set of constraints are:
               D1      D2
              ( min. )   ( min. )
Product  1 (x)      1        3
Product 2 (y) Â Â Â Â Â 2 Â Â Â Â Â Â Â 2 Â Â Â Â Â Â
Availability       860     1200
First constraint:
Time available in D1: Â 860 minutes
1×x  +  2×y  ≤ 860
Second constraint:
Time available in D2: 1200 minutes
3×x  +  2×y  ≤ 1200
General constraint:  x ≥ 0  ;  y ≥ 0  integers ( we will assume only complete products at the end of the period no fractions )
Then the model is:
z = 3× x + 5×y   to be maximize
Subject to: Â
1×x  +  2×y  ≤ 860
3×x  +  2×y  ≤ 1200
x ≥0  y ≥ 0  integers
With the help of AtoZmath we get the solution:
x = 170 units
y = 345 units
z(max) = 2235 rupies
Related Link: https://brainly.com/question/15319802