The roots of 2x^{2} + 3x = 4 are α and β. Find the simplest quadratic equation which has roots [tex]\frac{1}{alpha} [/tex] and [tex]\frac{1}{beta} [/tex].

Respuesta :

[tex]2x^2+3x=4\implies2x^2+3x-4=0\implies x=\dfrac{-3\pm\sqrt{41}}4[/tex]

Let [tex]\alpha[/tex] be the root with the positive square root and [tex]\beta[/tex] the root with the negative square root. Then

[tex]\dfrac1\alpha=\dfrac4{-3+\sqrt{41}}\quad\text{and}\quad\dfrac1\beta=\dfrac4{-3-\sqrt{41}}[/tex]

The simplest quadratic with these roots can be written as

[tex]\left(x-\dfrac1\alpha\right)\left(x-\dfrac1\beta\right)=x^2-\left(\dfrac1\alpha+\dfrac1\beta\right)x+\dfrac1{\alpha\beta}=x^2-\dfrac34x-\dfrac12[/tex]
Q&A Education