Respuesta :
The function [tex]f(x)=4\sqrt[3]{x}[/tex] is a cube root function and the function end behavior is: [tex]x[/tex] โ [tex]+[/tex] โ, [tex]f(x)[/tex] โ [tex]+[/tex] โ, and as [tex]x[/tex] โ - โ, [tex]f(x)[/tex] โ [tex]+[/tex] โ
What is end behavior?
- The end behavior of a function f defines the behavior of the function's graph at the "ends" of the x-axis.
- In other words, the end behavior of a function explains the graph's trend when we look at the right end of the x-axis (as x approaches +) and the left end of the x-axis (as x approaches ).
To determine the end behavior:
- The equation of the function is given as: [tex]f(x)=4\sqrt[3]{x}[/tex]
- To determine the end behavior, we plot the graph of the function f(x).
- We can see from the accompanying graph of the function:
- As x approaches infinity, so does the function f(x), and vice versa.
- As a result, the function end behavior is: ย
[tex]x[/tex] โ [tex]+[/tex] โ, [tex]f(x)[/tex] โ [tex]+[/tex] โ, and as [tex]x[/tex] โ - โ, [tex]f(x)[/tex] โ [tex]+[/tex] โ
Therefore, the function [tex]f(x)=4\sqrt[3]{x}[/tex] is a cube root function and the function end behavior is: [tex]x[/tex] โ [tex]+[/tex] โ, [tex]f(x)[/tex] โ [tex]+[/tex] โ, and as [tex]x[/tex] โ - โ, [tex]f(x)[/tex] โ [tex]+[/tex] โ
Know more about functions' end behavior here:
https://brainly.com/question/1365136
#SPJ4
The complete question is given below:
What is the end behavior of the function f of x equals negative 4 times the cube root of x?
As x โ โโ, f(x) โ โโ, and as x โ โ, f(x) โ โ.
As x โ โโ, f(x) โ โ, and as x โ โ, f(x) โ โโ.
As x โ โโ, f(x) โ 0, and as x โ โ, f(x) โ 0.
As x โ 0, f(x) โ โโ, and as x โ โ, f(x) โ 0.