Respuesta :

From the graph, we notice that the parabola has to be a horizontal parabola with vertex at:

[tex](-2,3),[/tex]

that opens to the right.

Recall that the standard form of a horizontal parabola is:

[tex]\mleft(y-k\mright)^2=4p\mleft(x-h\mright)\text{.}[/tex]

Where, (h,k) are the coordinates of the vertex, and p is the distance to the vertex to focus.

Substituting the vertex in the above equation, we get:

[tex](y-3)^2=4p(x-(-2))\text{.}[/tex]

From the diagram, we get that:

[tex]p=3.[/tex]

Therefore:

[tex](y-3)^2=12(x+2)\text{.}[/tex]

Solving the above equation for x, we get:

[tex]\begin{gathered} \frac{(y-3)^2}{12}=x+2, \\ x=\frac{(y-3)^2}{12}-2. \end{gathered}[/tex]

Answer:

[tex]x=\frac{(y-3)^2}{12}-2.[/tex]

Q&A Education