Respuesta :

Given,

The diameter of the circle is 18 feet.

The measure of the arc is 30 degree.

Required:

The area of the sector.

The radius of the circle is calculated as:

[tex]\begin{gathered} Radius\text{ =}\frac{diameter}{2} \\ Radius\text{ =}\frac{18}{2} \\ Rad\imaginaryI us=9\text{ feet} \end{gathered}[/tex]

The area of the sector of the circle is calculated as:

[tex]Area\text{ =}\frac{\theta}{360^{\circ}}\times2\pi(radius)[/tex]

Substituting the values then,

[tex]\begin{gathered} Area\text{ =}\frac{30^{\circ}}{360^{\circ}}\times2\times\frac{22}{7}\times9 \\ =\frac{3}{36}\times\frac{44}{7}\times9 \\ =\frac{1}{4}\times\frac{44}{7}\times3 \\ =\frac{11}{7}\times3 \\ =\frac{33}{7}\text{ feet}^2 \end{gathered}[/tex]

Hence, the area of the sector is 33/7 square feet.

Q&A Education