Answer:
About 4.2 ft
Explanation:
The area of the traingle can be calculated in two ways.
[tex]A=\frac{1}{2}\text{width}\cdot\text{length}[/tex]
where width = 4.4 ft and length = 13.6 ft.
Putting in the values for width and length gives
[tex]\begin{gathered} A=\frac{1}{2}13.6\cdot4.4_{} \\ \boxed{A=29.92ft^2} \end{gathered}[/tex]
The other way that the area can be calculated is
[tex]A=\frac{1}{2}\cdot\text{height}\cdot\text{base}[/tex]
where height = vertical length and base = 14.3 ft; therefore.
[tex]\begin{gathered} A=\frac{1}{2}14.3h \\ A=7.15h \end{gathered}[/tex]
This must equal the area of the triangle we found above; therefore,
[tex]A=29.92=7.15h[/tex][tex]29.92=7.15h[/tex]
dividing both sides by 7.15 gives
[tex]h=\frac{29.92}{7.15}[/tex][tex]\boxed{h\approx4.2ft}[/tex]
which is our answer!