Respuesta :

Answer:

The length of the segment is 9.85.

[tex]B.9.85[/tex]

Explanation:

We want to find the distance between two points.

Using the formula;

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_{2_{}}-y_1)^2}[/tex]

The two endpoints have the coordinates;

[tex]\begin{gathered} (-4,-1) \\ (5,3) \end{gathered}[/tex]

Substituting the coordinates, we have;

[tex]\begin{gathered} d=\sqrt[]{(x_2-x_1)^2+(y_{2_{}}-y_1)^2} \\ d=\sqrt[]{(5-(_{}-4)_{})^2+(3_{}_{}-(-1))^2} \\ d=\sqrt[]{(9)^2+(4)^2} \\ d=\sqrt[]{81+16} \\ d=\sqrt[]{97} \\ d=9.85 \end{gathered}[/tex]

Therefore, the length of the segment is 9.85.

[tex]B.9.85[/tex]