Respuesta :

From the position-time graph, we have the following:

Distance covered Time

0 to 28 m 0 to 20 seconds

28m to 52 m 20 to 60 seconds

At 52 m 60 to 80 seconds

52 to -20m 80 to 110 seconds

Let's find the average speed for the entire trip.

To find the average speed, apply the formula:

[tex]avg\text{ spe}ed=\frac{total\text{ distance}}{total\text{ time}}[/tex]

Distance at line 1: 28 - 0 = 28m

Distance at line 2: 52 - 28 = 24 m

Distance at line 3: 0 m

Distance at line 4: -20m - 52 = -72 m

Thus, we have the equation:

[tex]s=\frac{d_1}{t_1}+\frac{d_2}{t_2}+\frac{d_3}{t_3}+\frac{d_4}{t_4}[/tex]

Where:

d1 = 28 m

d2 = 24 m

d3 = 0 m

d4 = 72 m

t = 110 s

Now substitue values into the equation:

[tex]\begin{gathered} s=\frac{28}{20}+\frac{24}{40}+\frac{0}{20}+\frac{72}{30} \\ \\ s=4.4\text{ m/s} \end{gathered}[/tex]

Therefore, the average speed for the trip is 4.4 m/s.

ANSWER:

Equation:

[tex]s=\frac{d_1}{t_1}+\frac{d_2}{t_2}+\frac{d_3}{t_3}+\frac{d_4}{t_4}[/tex]

Substitution:

[tex]s=\frac{28}{20}+\frac{24}{40}+\frac{0}{20}+\frac{72}{30}[/tex]

Calculation:

[tex]\begin{gathered} s=1.4\text{ + }0.6\text{ + 0 + }2.4 \\ \\ s=4.4\text{ m/s} \end{gathered}[/tex]