If $x$ and $y$ are positive real numbers for which $(x + y)^2 + (x - y)^2 = 10$ and $(x + y)^4 + (x - y)^4 = 98$, what is the value of $xy$? Express your answer in simplest radical form.

Respuesta :

[tex](x+y)^2+(x-y)^2=10[/tex]
[tex]\implies 2x^2+2y^2=10[/tex]
[tex]\implies x^2+y^2=5[/tex]
[tex]\implies (x^2+y^2)^2=x^4+2x^2y^2+y^4=25[/tex]

[tex](x+y)^4+(x-y)^4=98[/tex]
[tex]\implies 2x^4+12x^2y^2+2y^4=98[/tex]
[tex]\implies x^4+6x^2y^2+y^4=49[/tex]
[tex]\implies 25+4x^2y^2=49[/tex]

[tex]4x^2y^2=24[/tex]
[tex]\implies x^2y^2=6[/tex]
[tex]\implies xy=\sqrt6[/tex]
Q&A Education