What is the angular velocity of a 6–foot pendulum that takes 3 seconds to complete an arc of 14.13 feet? Use 3.14 for π.

Respuesta :

The circle is 12 foot diameter. 
Circumference = (pi)(12) = 37.70 feet 
14.13/37.70 = 0.3748 
0.3748(360 degrees) = 134.9 degrees 
134.9degrees/3sec = 45degrees/second

Answer:

Angular velocity=0.785rad/s

Step-by-step explanation:

Let us first consider the circumference of pendulum that is:

Circumference=[tex]2{\pi}r[/tex], where r is the radius.

Now, it is given that the radius is= 6 foot , therefore

Circumference=[tex]2{\times}3.14{\times}6[/tex]

Circumference=[tex]37.68foot[/tex]

Now, Calculate enough time to produce a whole circular, by causing a proportion with both ratios:  

Ratio 1 =[tex]\frac{x}{37.68}[/tex] and Ratio 2=[tex]{\frac{3}{14.13}}[/tex]

Thus, ratio 1 = ratio 2

[tex]\frac{x}{37.68}={\frac{3}{14.13}}[/tex]

[tex]x=\frac{3{\times}37.68}{14.13}[/tex]

[tex]x=8s[/tex]

Also, Calculate the angular speed as the [tex]2\pi[/tex]radian (which is the full total angle of the group) divided by enough time.  

So the angular speed is =[tex]\frac{2\pi rad}{8s}=\frac{2{\times}3.14 rad}{8s}=0.785rad/s[/tex].

Q&A Education