Given 2 point P(a, b) and Q(c, d), the distance |PQ|
is given by [tex]|PQ|= \sqrt{ (a-c)^{2} + (b-d)^{2}}[/tex]
i) the distance between points (-2, 5) and (-2, -7) is:
[tex]d_1= \sqrt{ (-2-(-2))^{2} + (5-(-7))^{2}}=\sqrt{ (0)^{2} + (12)^{2}}=12[/tex]
units
ii) the distance between points (-6, -4) and (-2, -7) is:
[tex]d_2= \sqrt{ (-6-(-2))^{2} + (-4-(-7))^{2}}=\sqrt{ (-4)^{2} + (3)^{2}}=5[/tex]
units
iii) the distance between points (-2, 5) and (-6, -4) is:
[tex]d_3=\sqrt{ (-2-(-6))^{2} + (5-(-4))^{2}}=\sqrt{ (4)^{2} + (9)^{2}}=\sqrt{ 16 + 81}= \sqrt{97} [/tex]
units.
Answer:
the shortest distance is the distance between points (-6, -4) and (-2, -7)