What is the first term of the geometric sequence presented in the table below?
n 4 9
an 6 −192

Hint: an = a1(r)n − 1, where a1 is the first term and r is the common ratio.



Respuesta :

The equation for the n-th term of the geometric sequence is
[tex]a_{n} = a_{1}r^{n-1}[/tex]
where
a₁ =  the first term
r = the common ratio.

a₄ = 6, therefore
a₁ r³ = 6                      (1)

a₉ = -192, therefore
a₁ r⁸ = -192                 (2)

Divide equation (2) by equation (1).
[tex] \frac{a_{1}r^{8}}{a_{1}r^{3} } = \frac{-192}{6} \\ r^{5} = -32 = (-2)^{5} \\ r=-2[/tex]

From (1), obtain
a₁(-2)³ = 6
-8a₁ = 6
a₁ = -3/4

Answer: -3/4