Respuesta :
1. (0, 0)
2. f(x) = −3x+5
f(x) = y, switch the x and y
x = -3y+5, now solve for y:
-3y +5-5 = x-5
-3y = x-5
-3y/-3 = (x-5)/-3
y = -x/3 + 5/3
Dunno why that's not an option
2. f(x) = −3x+5
f(x) = y, switch the x and y
x = -3y+5, now solve for y:
-3y +5-5 = x-5
-3y = x-5
-3y/-3 = (x-5)/-3
y = -x/3 + 5/3
Dunno why that's not an option
Answer:
1. (0, 0), (1, −1) and (4, 2)
2. The correct option is 4.
Step-by-step explanation:
1.
The given function is
{(−3, 9), (−1, 1), (0, 0), (2, 4)}
If a function is defined as
[tex]f=\{(x,y):x\in R, y\in R\}[/tex]
then the inverse of the function is
[tex]f^{-1}=\{(y,x):x\in R, y\in R\}[/tex]
The inverse of the given function is
{(9,−3), (1,−1), (0, 0), (4,2)}
Therefore the points (0, 0), (1, −1) and (4, 2) are on the graph of the inverse.
2.
The given function is
[tex]f(x)=-3x+5[/tex]
The equation of the function is
[tex]y=-3x+5[/tex]
Interchange x and y.
[tex]x=-3y+5[/tex]
Isolate y.
[tex]x-5=-3y[/tex]
Divide both sides by -3.
[tex]\frac{x-5}{-3}=y[/tex]
The inverse of the given function is
[tex]f^{-1}(x)=-\frac{x}{3}+\frac{5}{3}[/tex]
Therefore the correct option is 4.