Let be the linear transformation that first reflects points through the -axis and then then reflects points through the line . find the standard matrix for

Respuesta :

In the case above, the standard matrix A for T:

T= [0 1]

    [-1 0]

What is  linear transformation  about?

A linear transformation is known to be a kind of a function that exist from one vector point to another and it is one that often respects the linear) structure of all of vector space.

Note that in the linear transformation;

T: R² R²

T=  (x, y), (-x, y)

Since:

(x,y) - (x,-y) - (y,-x)

A= [-1 0]

   [0 1]

A= [-1 0]    =       A= [-x]

   [0 1]                    [y]

Then [tex]T_{b}[/tex] is the reflection of (x- y); Since;

B = [0 1]

    [1 0]

Then [tex]T_{B} (T_{a}(x) )[/tex]  =  [0 1]        =      A= [-x]

                              [0 1]                     [y]

  = [-x]

    [y]

Then: T: = [0 1]                  [x]

                [0 1]                   [y]

           

   

Therefore, In the case above, the standard matrix A for T:

T= [0 1]

    [-1 0]

           

Learn more about linear transformation from

https://brainly.com/question/20366660

#SPJ1

Ver imagen Martebi